

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	metlog-psutils 0.1 documentation

metlog-psutils

metlog-psutils is a plugin extension for Metlog
<http://github.com/mozilla-services/metlog-py>. metlog-psutils
provides details about network connections, memory usage, cpu usage
and even some thread details.

This plugin works best on Linux. Running the plugin under OSX will
skip some functionality and will require root privileges.

More information about how Mozilla Services is using Metlog (including what is
being used for a router and what endpoints are in use / planning to be used)
can be found on the relevant spec page [https://wiki.mozilla.org/Services/Sagrada/Metlog].

	Configuration

	Usage

	Detailed message layout
	Open sockets

	CPU time

	I/O counters

	Memory Usage

	Thread level CPU usage

	API documentation

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	metlog-psutils 0.1 documentation

Configuration

Configuration is normally handled through Metlog’s configuration
system using INI configuration files. A psutil plugin must use the
metlog_psutils.psutil_plugin:config_plugin as the provider of the
plugin. The suffix of the configuration section name is used to
set the method name on the Metlog client. Any part after
metlog_plugin_ will be used as the method name.

In the following example, we will bind a method procinfo into the
Metlog client where we will allow network messages to be sent to
the Metlog server.

[metlog_plugin_procinfo]
provider=metlog_psutils.psutil_plugin:config_plugin
net=True

Currently supported details options are:

	net - details for each network connection

	io - counters for bytes read, written and the # of syscalls

	cpu - CPU time used by user space and kernel

	mem - memory usage for RSS and VMS

	threads - CPU usage for user/system per thread

Usage

Obtaining a client can be done in multiple ways, please refer to the
metlog documentation for complete details.

That said, if you are impatient you can obtain a client using
get_client. We strongly suggest you do not do this though.

from metlog.holder import get_client

Logging your process details involves telling the plugin which details
you would like to log. For each type of detail you would like to log,
you must explicitly tell the logger that you would like that
information. This is done to allow the suppression of log details
through the configuration file.

Using the above example, the following snippet will log network
details.

from metlog.holder import get_client
client = get_client('metlog_psutil')
client.procinfo(net=True)

The call to procinfo will send network details to the backend
Metlog server. The transmission of those network details
can be entirely suppressed through the configuration file. This is
useful in cases where collecting data is not useful due to
excessive logging or if the logs are simply not useful. An example
with network messages disabled is illustrated below.

[metlog_plugin_procinfo]
provider=metlog_psutils.psutil_plugin:config_plugin
net=False

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	metlog-psutils 0.1 documentation

Detailed message layout

The plugin will only send the process details that you explicitly
ask for. These details are formatted as JSON blobs that are formatted
such that a statsd message can be generated on the metlog server side.
The following is an example that creates network, cpu, io, memory and
thread statistics.

Each statsd messages is namespaced with psutil.<group>.<hostname>.<pid>

Note that hostnames have periods replaced with underscore characters
so that statsd and graphite will properly namespace the messages.

Open sockets are represented with a two part key.

The key is comprised of:

	the host and port of the socket on the server side. Note that the
IP address has periods converted into underscores.

	the TCP connection status

For the following examples, the hostname of the server is
MyHostName and the process ID of the parent process is 9973.

Open sockets

An example of a server socket that is listening

{'ns': 'psutil.net.MyHostName.9973',
 'key': '127_0_0_1:50007.LISTEN',
 'rate': 1,
 'value': 1}

This will then get serialized into a statsd message in form of:

psutil.net.MyHostName.9973.127_0_0_1:50007.LISTEN|1|1

CPU time

CPU information for seconds in user space, seconds in kernel space,
and percentage of CPU time used is represented as

{'ns': 'psutil.cpu.MyHostName.9973',
 'key': 'user',
 'rate': '',
 'value': 0.12 }

{'ns': 'psutil.cpu.MyHostName.9973',
 'key': 'sys',
 'rate': '',
 'value': 0.02 }

{'ns': 'psutil.cpu.MyHostName.9973',
 'key': 'pcnt',
 'rate': '',
 'value': 0.0 }

These are formatted into the following statsd messages:

psutil.cpu.MyHostName.9973.user|0.12
psutil.cpu.MyHostName.9973.sys|0.02
psutil.cpu.MyHostName.9973.pcnt|0.0

I/O counters

I/O metrics provide bytes read, written and the number of system calls
used for read and write operations.

{'ns': 'psutil.io.MyHostName.9973',
 'key': 'read_bytes',
 'rate': '',
 'value': 50}

{'ns': 'psutil.io.MyHostName.9973',
 'key': 'write_bytes',
 'rate': '',
 'value': 200}

{'ns': 'psutil.io.MyHostName.9973',
 'key': 'read_count',
 'rate': '',
 'value': 3115}

{'ns': 'psutil.io.MyHostName.9973',
 'key': 'write_count',
 'rate': '',
 'value': 5434}

This will then get serialized into a statsd message in form of:

psutil.io.MyHostName.9973.read_bytes|50
psutil.io.MyHostName.9973.write_bytes|200
psutil.io.MyHostName.9973.write_count|3115
psutil.io.MyHostName.9973.write_bytes|5434

Memory Usage

Memory stats provide percentage of memory used as well as RSS and VMS
usage.

{'ns': 'psutil.meminfo.MyHostName.9973',
 'key': 'pcnt',
 'rate': '',
 'value': 2.193876346582101}

{'ns': 'psutil.meminfo.MyHostName.9973',
 'key': 'rss',
 'rate': '',
 'value': 11415552}

{'ns': 'psutil.meminfo.MyHostName.9973',
 'key': 'vms',
 'rate': '',
 'value': 52461568}

This will then get serialized into a statsd message in form of:

psutil.meminfo.MyHostName.9973.pcnt|2.193876346582101
psutil.meminfo.MyHostName.9973.rss|11415552
psutil.meminfo.MyHostName.9973.vms|52461568

Thread level CPU usage

Thread level CPU usage adds the thread id as a prefix to the key.
statsd is provided with CPU usage for user space and kernel space in
seconds. The key is prefixed with the thread id so that statistics
per thread per process can be monitored. In the following example, CPU
stats for thread 17177 are monitored.

{'ns': 'psutil.thread.MyHostName.9973',
 'key': '17177.sys',
 'rate': '',
 'value': 0.02}

{'ns': 'psutil.thread.MyHostName.9973',
 'key': '17177.user',
 'rate': '',
 'value': 0.13}

This will then get serialized into a statsd message in form of:

psutil.thread.MyHostName.9973.17177.sys|0.02
psutil.thread.MyHostName.9973.17177.user|0.13

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	metlog-psutils 0.1 documentation

API documentation

	
class metlog_psutils.psutil_plugin.LazyPSUtil(pid, server_addr=None)

	This class can only be used outside the process that is being inspected

	
get_busy_stats()

	Get process busy stats.

Return 3 statsd messages for total_cpu time in seconds, total
uptime in seconds, and the percentage of time the process has been
active.

	
get_connections()

	Return details of each network connection as a list of
dictionaries.

Keys in each connection dictionary are:

local - host:port for the local side of the connection

remote - host:port of the remote side of the connection

	status - TCP Connection status. One of :

	
	“ESTABLISHED”

	“SYN_SENT”

	“SYN_RECV”

	“FIN_WAIT1”

	“FIN_WAIT2”

	“TIME_WAIT”

	“CLOSE”

	“CLOSE_WAIT”

	“LAST_ACK”

	“LISTEN”

	“CLOSING”

	
get_cpu_info()

	Return CPU usages in seconds split by system and user for the
whole process. Also provides CPU % used for a 0.1 second
interval.

Note that this method will block for 0.1 seconds.

	
get_io_counters()

	Return the number of bytes read, written and the number of
read and write syscalls that have invoked.

	
get_memory_info()

	Return the percentage of physical memory used, RSS and VMS
memory used

	
get_thread_cpuinfo()

	Return CPU usages in seconds split by system and user on a
per thread basis.

	
summarize_network(network_data)

	Summarizes network connection information into something that
is friendly to statsd.

From a metrics standpoint, we only really care about the
number of connections in each state.

	Connections are sorted into 2 buckets

	
	server connections

For each listening host:port, a dictionary of connection
states to connection counts is created

	
metlog_psutils.psutil_plugin.check_osx_perm()

	psutil can’t do the right thing on OSX because of weird permissioning rules
in Darwin.

http://code.google.com/p/psutil/issues/detail?id=108

	
metlog_psutils.psutil_plugin.config_plugin(config)

	Configure the metlog plugin prior to binding it to the
metlog client.

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	metlog-psutils 0.1 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 metlog_psutils	

 	
 	
 metlog_psutils.psutil_plugin	

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 modules |

 	metlog-psutils 0.1 documentation

Index

 C
 | G
 | L
 | M
 | S

C

 	

 	check_osx_perm() (in module metlog_psutils.psutil_plugin)

 	

 	config_plugin() (in module metlog_psutils.psutil_plugin)

G

 	

 	get_busy_stats() (metlog_psutils.psutil_plugin.LazyPSUtil method)

 	get_connections() (metlog_psutils.psutil_plugin.LazyPSUtil method)

 	get_cpu_info() (metlog_psutils.psutil_plugin.LazyPSUtil method)

 	

 	get_io_counters() (metlog_psutils.psutil_plugin.LazyPSUtil method)

 	get_memory_info() (metlog_psutils.psutil_plugin.LazyPSUtil method)

 	get_thread_cpuinfo() (metlog_psutils.psutil_plugin.LazyPSUtil method)

L

 	

 	LazyPSUtil (class in metlog_psutils.psutil_plugin)

M

 	

 	metlog_psutils.psutil_plugin (module)

S

 	

 	summarize_network() (metlog_psutils.psutil_plugin.LazyPSUtil method)

 Copyright 2012, Victor Ng.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		metlog-psutils 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Victor Ng.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

